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Signal Integrity Challenges in High Speed PCBs
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Why Focus on SI/PI/EMI?

• Most of what you do in high speed PCB design is intended to 

ensure signal integrity (SI).

• Related: Power integrity

• Related: Electromagnetic interference

• Determined by a few critical areas:
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• Stackup/material selection

• Differential interconnect design and routing

• Stable power system design

• Noise coupling between interconnects



Digital Signal Integrity

• Signals → Analyzed in the time domain

• Channels → Analyzed in the time or frequency domain

• Metrics: S-parameters, impedance, inter-symbol interference (ISI), 

jitter, channel operating margin (COM),…

PCB

PAM4 Signaling in High-Speed Serial Technology: Test, Analysis, and Debug. Tektronix Application Note, July 2018.



Example with 56G channels on Eurocard backplane (6U)
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Digital Signals and Rise Time

• Signal rise time (
𝑑𝐼

𝑑𝑡
and 

𝑑𝑉

𝑑𝑡
) governs electrical behavior

• Crosstalk

• Radiated emissions

• Measurement artifacts 

(Gibbs)

• Transient phenomena

• Resonant phenomena
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Loss Mechanisms

• Dielectric losses

• Copper losses (DC, skin effect, roughness)

• Plating and solder mask create additional losses

• Radiation losses
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Current crowding around edges



Real Signal Integrity Metrics
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Overlaps with 

MoM results

• Rough line: W = 0.178 mm (6.996 mil)

• 50 Ω Smooth line: W = 0.180 mm (7.085 mil) →

No dispersion or skin effect

• Smooth dispersion-less line: ε = 4.171 +
0.0576𝑖 (@ 1 GHz)

• Commercial MoM solver says 49.99 Ohms at 

7.614 mils



Inhomogeneities Lead to Skew

• Signal rise time can be used to find a very large length matching 

tolerance (sometimes this will be several cm)

• However: this assumes perfect channels!
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𝑉𝑟𝑒𝑓 + ∆𝑉

𝑉𝑟𝑒𝑓 − ∆𝑉

∆𝑡𝑚𝑎𝑥

𝑉𝑟𝑒𝑓

𝜀𝑟𝑒𝑠𝑖𝑛 < 𝜀𝑓𝑖𝑏𝑒𝑟 Still skew with perfect length matching!

What are the other 

sources of skew/jitter?



Jitter

• Jitter is best defined as “the sum of all skews” (Steve Corrigan, Texas 

Instruments)
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Anritsu. A Guide to Making RF Measurements for Signal Integrity Applications. 2016.



Channel Characterization
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Objectives in Channel Characterization

• Determine magnitude of SI problems

• Find potential cause of SI problems

• Determine course of action to eliminate the problem

• Example: Layer thickness and routing – should these be changed?

• Example: Prepreg vs. core order
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Channel Characterization Methods

• Oscilloscope w/ eye diagram

• VNA (S-parameter measurements)

• Spectrum analyzer + arbitrary 

waveform generation

• Probe and instrument 

characteristics must be known

Analytical Experimental

• Numerical methods:

• 2D field solvers w/BEM or MoM

• 3D field solvers

• SPICE

• IBIS

• By hand with formulas or mixed 

formulas/tabulated data

• Dispersive losses → requires 

wideband analysis



Crosstalk

• Near-end and far-end crosstalk (NEXT and FEXT)
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Always ≤ 𝟏



Differential Crosstalk

• Differential pairs can exhibit crosstalk between each other

• For FPGAs: Plan to stagger vias (same strategy used in OpenVPX

backplanes), interleave ground vias

16Breakout on FPGA Bus routing on backplane



Time-domain Reflection Simulation

• Can be calculated with same 2D solver as in crosstalk simulations
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Adjust trace width?

Termination?

Reduce inductance?

Ground bounce?

Crosstalk?

Reflection ringing?



Eye Diagrams

• Identify noise and jitter → estimate BER and SNR
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Eye 

Diagram

PRBS

Noise

RX Threshold

Noise Margin
Jitter



More Advanced → Impulse Response

• Identify non-causal effects in channel models

• Identify reflections on the tail-end of impulse response
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Peterson, Z. “Causal Transmission Line Geometry Optimization for Impedance Control in PCBs.” Proceedings of the IEEE Electronics Packaging Society, 2020.

Moore, C., and Healey, A. "A method for evaluating channels." 100 Gb/s Backplane and Copper Study Group, IEEE, 2011.

Time delay, 20% loss



Single-bit Response From Impulse Response

• Based on channel simulation: determine impulse response, use to 

calculate single-bit response (SBR)
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𝑆𝐵𝑅 𝑡 = න

−∞

∞

𝐹 𝑡′ ℎ 𝑡 − 𝑡′ 𝑑𝑡′

𝑆𝐵𝑅 𝑡

ℎ 𝑡

𝐹 𝑡

𝛿 𝑡

Anritsu. A Guide to Making RF Measurements for Signal Integrity Applications. 2016.



IBIS (Input/output Buffer Information Specification) Models

• Behavioral model, faster than SPICE

• Assign model behavior by pin

• Available from manufacturers

• Models signal behavior on the 

output buffer in a logic circuit
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SPISim. IBIS model: What is IBIS? 2015. Source: http://www.spisim.com/blog/ibis-model-what-is-ibis/

http://www.spisim.com/blog/ibis-model-what-is-ibis/


Analysis of Transmission Line Styles
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Impedance and Propagation

Coplanar microstrip

Coplanar microstrip w/ ground

Microstrip

Symmetric stripline

Asymmetric stripline

• Lower losses, copper pour 

allows for thinner 50 Ohm traces

• Lower losses, wider traces

• Higher losses, but traces can 

be much thinner than on the 

surface layer

𝑣 =
𝑐

𝜀𝑅,𝑒𝑓𝑓

𝑣 =
𝑐

𝜀𝑅,𝑒𝑓𝑓

𝑣 =
𝑐

𝜀𝑅
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𝑍0 =
𝑅+𝑖𝜔𝐿

𝐺+𝑖𝜔𝐶
,  𝛾 = (𝑅 + 𝑖𝜔𝐿)(𝐺 + 𝑖𝜔𝐶)→ 𝑣 =

1

𝐿𝐶
(lossless)



You Could Do It By Hand…
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• Transmission lines: 𝑍0 =
𝑅+𝑖𝜔𝐿

𝐺+𝑖𝜔𝐶
,  𝛾 = (𝑅 + 𝑖𝜔𝐿)(𝐺 + 𝑖𝜔𝐶)

𝑅 𝜔 = 𝑅𝐷𝐶 + 𝜔𝑅𝑠 𝐿 𝜔 = 𝐿∞ + ൘
𝑅𝑠

𝜔
𝐺 𝜔 = 𝜔𝐶 𝜔 tan𝛿 (𝜔) 𝐶 𝜔 = 𝐾𝑔𝜀𝑅 𝜔 𝜀0

• Dielectric constant: 𝜀 = 𝜀𝑅(𝜔) + 𝑖𝜀𝐼(𝜔), 𝑡𝑎𝑛𝛿 =
−𝜔𝜀𝐼 𝜔 −𝜎𝑠𝑢𝑏

𝜔𝜀𝑅

• Need causal models or data for:

Dielectric constant: 𝜀(𝜔)

Copper roughness: 𝐾(𝜔)

Electrical parameters: 𝑅(𝜔), 𝐿(𝜔)

Zhang, J., et al. “Causal RLGC(f) Models for Transmission Lines From Measured S-Parameters,” IEEE Transactions on

Electromagnetic Compatibility, 52(1), pp.189-198 (2009).

Incomplete



Transmission Line Transfer Function
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• General definition:

• Three cases that can be derived by hand from ABCD parameters:

𝑍𝑆 = 0, load terminated with 𝑍𝑇: 𝐻(𝑠) =
1

cosh 𝛾𝑙(1+𝑍0
1+𝑠𝑍𝑇𝐶𝐿

𝑍𝑇
tanh 𝛾𝑙)

𝑍𝑆 = 𝑍0, load terminated with 𝑍𝑇: 𝐻(𝑠) =
𝑒−𝛾𝑙

1+𝑍0
1+𝑠𝑍𝑇𝐶𝐿

𝑍𝑇

Unterminated 𝑍𝑆 = 0, 𝑍𝐿 =
1

𝑠𝐶𝐿
: 𝐻 𝑠 =

1

cosh 𝛾𝑙(1+𝑍0𝑠𝐶𝐿 tanh 𝛾𝑙)



Simple Loss Estimation
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• Approximate the square root:

• Take the real part of the result and break into conductor + dielectric

𝛾 = (𝑅 + 𝑖𝜔𝐿)(𝐺 + 𝑖𝜔𝐶)

4.12 mil dielectric thickness, 
unmodified Dk = 4.17/Df = 0.014



Differential Pair Routing Tips

• Antipad shape and size creates parasitic capacitance

• Place with stitching vias to control parasitics
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GND plane on L2
Diff. pair on L1

Additional parasitic 𝐶 proportional to 

antipad-to-via distance



Antipads

• A simple model for vias and antipads
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GND plane on L2



Differential Pair Routing and Mode Conversion

• Add length matching sections near inhomogeneity if possible
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Via Stubs

300.1 mm stub length: okay for signals up to roughly 150 GHz (typical FR4 substrate)

Low 𝒇:

High 𝒇: Treat as a resonator (next slide), use input impedance

∆𝜑 = 2𝜋
𝐿𝑣𝑖𝑎𝑓 𝐷𝑘𝑒𝑓𝑓

𝑐

Signal destroyed whenever 

∆𝜑 = 180˚



Via Stubs

• When should stubs be removed?

• Stubs act like transmission lines:

𝑓𝑛 =
𝑐𝑣𝑎𝑐𝑢𝑢𝑚

λ𝑛 𝐷𝑘𝑒𝑓𝑓
,    𝑛 = 1, 3, 5,…

Without Via Stub

With Via Stub
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Predicting Stub Loss Frequencies for Diff. Pairs

• Stubs create destructive interference at quarter wavelength resonances:
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λ𝑛 =
4𝐿

𝑛
,    𝑛 = 1, 3, 5,…𝑓𝑛 =

𝑐𝑣𝑎𝑐𝑢𝑢𝑚

λ𝑛 𝐷𝑘𝑒𝑓𝑓

𝑆

Antipad size!

𝐷𝑘𝑒𝑓𝑓 =
𝐷𝑘𝑡𝑟 + 𝐷𝑘𝑧

2

ln
𝑆
𝐷
+

𝑆
𝐷

2

− 1

ln
𝑊 + 𝐻
2𝐷

𝐷𝑘𝑧~1.2𝐷𝑘𝑡𝑟

𝐿𝑚𝑎𝑥 𝑚𝑖𝑙𝑠 ≈
840

𝐺𝐵𝑎𝑢𝑑 ∗ 𝐷𝑘𝑒𝑓𝑓

𝑡𝑉𝑖𝑎 =
𝐿𝑉𝑖𝑎 𝐷𝑘𝑒𝑓𝑓

𝑐𝑣𝑎𝑐𝑢𝑢𝑚
Via delay:

𝑊

𝐻

𝐷



Alternative Strategy

• Stubs create destructive interference at quarter wavelength resonances:
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Minimal stub 

equal to layer 

thickness

Long stub may 

limit bandwidth

Leftover stub 

might be longer 

than the bottom 

layer thickness



Thank You!

Stay tuned for our Altium Designer demonstration.
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